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Abstract — The complex resonant frequency of open dielectric pillbox
resonators is analyzed by an analytical method proposed by the present
authors, which expands the field into a truncated series of solutions of the
Helmholtz equation in the spherical coordinates and treats the boundary
condition in the least-squares sense. This method is applied to calculate the
characteristics of several resonant modes which will be of practical use.
The accuracy of the method is confirmed by investigating the convergence
of solutions. Also, numerical results are compared with experimental
results of several resonant modes, which are obtained for the dielectric
samples with ¢, = 38.0 and 19.5 in the X -band.

[. INTRODUCTION

IELECTRIC PILLBOX resonators of the open type

have found many practical applications, particularly
in the spectral range from microwave to short millimeter-
wave frequencies [1]-[8]. Nevertheless, there are few meth-
ods of effective use in calculating the complex resonant
frequency; the resonant frequency and the Q-factor due to
radiation loss, for arbitrary permittivity ¢,. One effective
method used to analyze them has been presented by Van
Bladel et al. [9]-[11]. Their approach is based on the
asymptotic expansion of fields in powers of the reciprocal
of |fe, , so that the validity of their method is limited to the
case of relatively high €,, say 100 [11]. For improving the
accuracy of their method, it will be necessary to introduce
several higher order terms in 1///e, .

An alternative method has been developed by the pre-
sent authors [12]. Their approach, based on the Rayleigh
expansion theorem, analyzes the complex resonant
frequency without a limit on €, and is accurate in the sense
that the complex resonant frequency converges to the exact
value as the number of terms in the truncated expansion
increases. However, the authors have shown the numerical
results for TE,;; and TM ;5 modes only and also have had
no experimental discussion.

The purpose of this paper is to show numerically the
complex resonant frequency for several resonant modes
which will be of practical use, and also to discuss experi-
mentally the resonant characteristics of several modes,
including hybrid modes, along with the numerical results
obtained by the present method.
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Fig. 1. Dielectric pillbox resonator and spherical coordinate system.

II. ANALYSIS

A. Formulation of the Problem

Fig. 1 shows the geometry of an isolated dielectric pill-
box resonator which is surrounded by the medium with the
relative permittivity €,. The radius of the pillbox is a, the
thickness is 2b, and the relative permittivity is e,. Our
general method easily analyzes the complex resonant
frequency of higher order resonant modes, as well as the
lowest g-independent modes without any complexity. Ref-
erence [12] describes in detail the method, but a brief
summary is in order here.

First, we expand the fields in region 1 and region 2 in
terms of solutions to the Helmholtz equation in the spheri-
cal coordinate system (r, 8, p) obtained by separation of
variables. By referring to [12, eq. (1)] or [13, egs. (6)-(26)],
the fields of a resonator at an arbitrary angular frequency
w can be expressed by the following scalar potentials ¥,
and ¥,, (i=1,2), which generate a field TM to r and a
field TE to r, respectively:

¢rt=cos(m(p+(p0)ZAnt ktrF;l+l/2(k1r)an(cosa)ejwt
n
l?rl = Sin(m(p + (pO)ZL,vklrFHl/z(klr)an(cos0)e/“”

(i=1,2) (1)

where 4,, and 4,, are modal expansion coefficients to be
determined, ¢, is an arbitrary phase angle, and k, is the
wavenumber in the region (i =1,2). P/*(cos8) is the first-
kind associated Legendre function of order n,m, and
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F, 1(k,r) is given by

. (i) Jn+1/2(k1r), for region 1 @)
r) =
n+1/2\% H?, ,(k,r),  for region 2

where J, ,, , and H®, , are the first kind of the Bessel
function and the second kind of the Hankel function of the
order n +1/2, respectively.

The characteristic angular resonant frequency (complex
value) =8, + jQ, is determined by considering the
boundary condition on the resonator surface. However, the
infinite series in (1) should be truncated to a finite number
of terms »= N in practical calculations. Such approxi-
mated fields are therefore fitted to the boundary condition
in the least-squares sense [14]. Since the geometry of the
resonator under consideration has axial symmetry with
respect to the z-axis, the mean-squares error E in the
boundary condition can be written by the following line
integral [12]:

E=fr{|tE,1—|E,2|2 +Z'H,~H,PYal (3)

where I' denotes the boundary contour on the r—6 plane
(but 0 <0 < 7) at an arbitrary ¢ coordinate, E;,H,,(i =
1,2) denote the field components tangential to I', and the
intrinsic impedance of the region 1 (i /€€, ) is used for an
arbitrary impedance parameter Z. Since the resonator
shown in Fig. 1 has a plane of symmetry with respect to
the r—¢ plane at 8 = #/2, the calculation of (3) becomes
rather simple by taking the integral contour only in 0 < 8
< 7/2, along with a simple relation of P"(cosf) at 0 = w/2
[12).

Now, minimizing E with respect to both the modal
coefficients and the angular frequency w, we obtain the
characteristic angular resonant frequency & = Q, + jQ, (2,
>0,Q,>0) by the same procedure as described in [14].
This complex quantity @ explicitly leads to both the reso-
nant frequency f, and the intrinsic Q value Q, due to
radiation loss through the following relations:

fo=1/2m =koc/2m Qo =101/2%, (4)
where k, is the free-space wavenumber corresponding to
the resonant frequency f, and c is the velocity of light in
free space. The method mentioned here assures mathemati-
cally the uniform convergence in the sequence of the
truncated modal expansions such as in (1) [15].

B. Numerical Results

Apart from the analytical treatment mentioned in the
previous section, how to classify the resonant modes will be
followed here by way of classifying modes in a cylindrical
resonator [5], [12]. Throughout this section, the calculation
will be performed for the structure with b/a=1.0, and ¢,
is put as unity.

First, we compute both the normalized resonant
frequency kya and the intrinsic Q value Q, of the HE ,,
modes including the TE,; mode. As commonly known,
resonant modes of this group are characterized by the
predominant magnetic field in the z-direction. We have
already investigated the convergence of both kya and Q,
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TABLE I
NORMALIZED RESONANT FREQUENCIES AND INTRINSIC O VALUES
OF THE TE ;5 MODE CALCULATED FOR THE DIFFERENT NUMBER
NOF THE EXPANSION TERMS (¢, = 35, b/a =1).

N KeQ Qe

1] 0474 44,3
210473 | 43.3
310470 [ 40,1
410469 | 40.0
51 0.467 39.5
610467 39.5
7 10467 39.3
810467 39.3

TABLE II

NORMALIZED RESONANT FREQUENCIES AND INTRINSIC () VALUES
oF THE HE,;; MODE CALCULATED FOR THE DIFFERENT NUMBER
NOF THE EXPANSION TERMS (€, =35, b/a =1).
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Fig. 2. Resonant characteristics of the HE-mode group as a function of
¢,. (a) Normalized resonant frequency. (b) Intrinsic Q value.

for the TE,, mode [12]. For convenience sake, those
results are shown again in Table I, along with Table II,
which shows the similar calculations for the hybrid HE;;
mode. Both k,a and Q, of Tables I and 1I manifest a good
convergence for N > 5, though these tables show the results
obtained only for €, = 35.
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TABLE IIT
NORMALIZED RESONANT FREQUENCIES AND INTRINSIC Q VALUES
OF THE TM ;5 MODE CALCULATED FOR THE DIFFERENT NUMBER
NOF THE EXPANSION TERMS (¢, =35, b/a =1).

Qe
26.7
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24.8
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TABLE IV
NORMALIZED RESONANT FREQUENCIES AND INTRINSIC Q) VALUES
OF THE EH, 15 MODE CALCULATED FOR THE DIFFERENT NUMBER
NOF THE EXPANSION TERMS (¢, =35, b/a =1).

Qs
40.0
41.9
40.4
41.1
40.3
40.7
40.2
40.2

N|— (0w o kn|€
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For a hybrid mode, N means the number of expansion
terms of each of ¢,; and ¢,; in (1). As a result, it will be
enough to take N =10 for accurate calculations for the
HE-mode group, and Fig. 2(a) and (b) shows ﬁ koa and
Q, for several resonant modes, as a function of e,.

Next, Tables III and IV show the similar calculations
relating to the convergence for the TM;; mode and the
hybrid EH,;; mode, respectively. We see here that the
convergence for the EH-mode group is slower than that for
the HE-mode group.

It is well known that the edge-shaped boundaries as seen
in Fig. 1 usually cause the slow convergence in actual
calculations, although the method is complete in theory.
The EH-mode group has a predominant electric field in the
z-direction. This electric field transverse to the resonator’s
edges may be singular [16]. So, we may understand that the
dielectric edges in the resonator under consideration cause
a significantly slow convergence for the EH-mode group.
Indeed, Tables III and IV show that the calculated results
almost converge for N > 11, about twice as large as that of
the HE-mode group. Hence, for the EH-mode group, both
Je. koa and Q, are calculated with N =16, and the results
are shown in Fig. 3(a) and (b) as a function of «,.

11I. EXPERIMENTS

A. Experimental Setup

The experimental setup in the X-band is shown sche-
matically in Fig. 4. The microwave oscillator used can
sweep the frequency range 6.5-12.4 GHz. In the experi-
ments, five dielectric samples are used for pillbox resona-
tors. The samples I, 11, III, and IV have the same relative
permittivity ¢, = 38.0 and have, respectively, the following
dimensions: 2a X2b=15.72 mmXx2.38 mm, 5.72X2.40,
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Fig. 3. Resonant characteristics of the EH-mode group as a function of
€, (a) Normalized resonant frequency. (b) Intrinsic Q value.
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Fig. 4. Experimental setup for investigating the resonant characteristics
in the X-band.

5.79X2.40, and 5.79 X2.42; the structural ratio b/a = 0.42
is almost the same for these samples. One more sample
(sample V) has the parameters: ¢, =19.5, 2a X2b = 9.01
mm X 8.53 mm (b/a = 0.95).

For exciting a resonant mode in a pillbox, one can use a
rectangular dielectric image line which is put side by side
with a pillbox. In our experiments, both waveguide and
pillbox are put on a metal plate having the area 0.5 X1 m?,
First, we utilize the samples I-IV for investigating the
resonance of TE modes. In these samples, the resonances
take place only for three modes: TE;;, TEq,.,, and
HE, 5, in the above frequency range. To excite these
modes in a resonator, a TE propagating mode mainly
polarized parallel to the metal plate is launched in the
image line, and the coupling gap D is kept large enough to
have a small coupling.

For the TE;;,, and the HE,;; modes, one may replace
the r—¢ plane at § = 7/2 in Fig. 1 with a short-circuited
plane, so that the metal plate has no effect on the resonant
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Fig. 5. Effect of the metal plate on the resonant characteristics of the
TE ;s mode.

characteristics of these modes. However, the HE,;; mode
is so sensitive to the air gap between the metal plate and
the pillbox that it is quite difficult to get responsible data,
and we do not investigate the characteristics of this mode
experimentally. It should be noted here that a sample put
on the metal plate is regarded as an isolated pillbox having
the thickness 2b twice as thick as that of the original
sample (i.e., b/a = 0.84).

On the other hand, the TE; ; mode can replace the r—¢
plane at § = 7/2 with an open-circuited plane, so that it is
impossible to realize an isolated pillbox by putting a sam-
ple directly on the metal plane. Hence, in our experiments,
a pillbox is elevated upward by the height # from the metal
plate by means of a slender rod of foamed polystyrene (2
mme¢, €,=1.02). Neglecting the effect of the polystyrene
rod, both kya and Q, are calculated as a function of % /a,
as shown in Fig. 5. It is found that the resonant frequency
is almost the same as that of an isolated pillbox if & /a > 2,
but the Q value becomes slightly larger even at 4 /a = 3.
So, the experiments for the TEj;; mode are performed at
h /a =3, and the numerical results in the following section
are calculated by considering 4 /a = 3.

Next, sample V is utilized for investigating the resonant
characteristics of hybrid modes. Unlike the samples men-
tioned above, this sample shows the resonances of TE ;5. 1,
HE, 5.1, HE; 5 TM 15, EHy15, EHy 5.4, and EH, 5 modes
in the frequency range of our sweep oscillator. In this case,
the sample is always set with a height from the metal plate
by using a polystyrene rod, and a TE mode or a TM mode
propagating in the image line is used to excite selectively
the HE-mode group or the EH-mode group in the resona-
tor.

B. Experimental Results

Fig. 6 shows a typical resonant curve of the TE; mode
obtained for sample 1. In our experiments, the intrinsic Q
value is obtained from the best-fitted Lorentzian for the
measured curve by assuming that the coupling between
waveguide and pillbox is small enough and the adjacent
resonances interfere little with cach other. To confirm the
latter point, both k,a and @, are calculated as a function
of the structural ratio b/a, as shown in Fig. 7. It is found
that the TE;, and the HE,;; modes almost degenerate at
b/a =1, but decreasing b/a significantly splits this degen-
erate. As mentioned before, all of the samples have almost
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Fig. 6. Typical resonant curve of the TE;;; mode obtained for sample I -
(b/a =0.416).
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Fig. 7. Resonant characteristics of the TEy5 and the HE,;5 modes as a
function of the structural ratio b/a.

TABLEV
COMPARISON BETWEEN THE MEASURED AND THE CALCULATED
RESULTS OF BOTH RESONANT FREQUENCIES AND 0 VALUES FOR
" THE TEq,; MODE (€, = 38.0).

Sample Resonant Frequency (GHz) Q value
measured {theoretical measured |theoretical
I 9.11 9 13 46 50 1
I 9 10 g 10 46 50 2
i 9 _05 9 04 45 50 1
s 98.00 9.01 49 50 .1

the same ratio b/a = 0.42 for the resonance of the TE;
mode. Let us consider here sample 1, for example, which
has the ratio b/a = 0.416. Fig. 7 shows that this resonator
has the TE;; mode as the resonant mode of the lowest
order and the HE;,;; mode becomes the next higher order
mode. From Fig. 7, the resonant frequency of the TE;
mode is found tc be 9.13 GHz (kya = 0.547), while that of
the HE,;; mode is found to be 12.15 GHz (kya = 0.728),
which is entirely beyond the frequency range of Fig. 6.
Moreover, as mentioned before, we may expect the selec-
tive excitation of TE modes in a pillbox through an image
line. Hence, we may conclude that there is no adjacent
mode interfering with the resonance of the TEy; mode,
and the resonant curve of Fig. 6 is of the TE,; mode itself.
We have investigated the effect of interference among
adjacent modes not only for the TEy; mode in the other
samples, but also for the TEy ;. ; modes, and have con-
firmed that no interference occurs. Tables V and VI sum-
marize the measured resonant frequencies and the Q val-
ues for the TE;; mode and the TE;,,; mode, respec-
tively. It is found that the measured resonant frequencies
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TABLE VI
COMPARISON BETWEEN THE MEASURED AND THE CALCULATED
RESULTS OF BOTH RESONANT FREQUENCIES AND Q VALUES FOR
THE TEg, 5 +; MODE (¢, = 38.0).

Sample Resonant Frequency(GHz) Q value _
measured |theoretical measured [theoretical
1 10.89 10.80 420 482
I 10.86 10.86 410 483
I 10.80 10.79 420 481
v 10.73 10.75 410 482
TABLE VII

COMPARISON BETWEEN THE MEASURED AND THE CALCULATED
RESULTS OF BOTH RESONANT FREQUENCIES AND () VALUES FOR
SEVERAL HYBRID MODES (¢, =19.5).

Mode HRESONGNtFr uency(GHz) “Q value

ode megsured |theoretical measured |theoretical
=H118 9.04 9.04 18 11

[ Eg1ga 3.03 9.04 130 110
[Mo1g —— g .44 f— 8
HE218 9.80 5.73 110 110
HEj1gq] 10.03 10.00 110 112
EHyigg 11.53 11.59 89 .96
EHz1g 11.74 11.73 157 166

agree well with the calculated ones, while the agreement
between Q values is somewhat poor. Such a discrepancy,
about 15-percent maximum, will be unavoidable because of
less accuracy in the 0 measurement in our experimental
procedure, especially because of a lack of considering the
external Q value.

Table VII indicates the results obtained for sample V. As
the TM;;; mode in this sample has a quite low Q value, we
cannot measurc both f;, and Q,. Some modes, in this case,
show a little interference with each other, and the confi-
dence in measured data, especially for Q values, is slightly
worse than that obtained for the other samples.

Nevertheless, the experimental results in this section will
conclude that the analytical method [12] is effective in
practice to calculate the Q value, as well as the resonant
frequency, of a piltbox resonator having arbitrary permit-
tivity.

1V. CoNCLUSION

First, the analytical method for an open dielectric pill-
box resonator, previously proposed by the authors, has
been applied to analyze several resonant modes which
would be of practical use. The accuracy of the method was
-confirmed by investigating the convergence of calculations
for TMy;; and EH,;; modes, as well as TEy; and HE 5
modes. As expected from the effect at the dielectric edges
of a resonator, it was found that the convergence for the
EH-mode group was slower than that for the HE-mode
group.

Next, the experiments have been performed for the
samples with €, = 38.0 and 19.5 in the X-band, and it was
confirmed that the calculated results have sufficiently ex-
plained the experimental results of both the resonant
frequency and the Q value.

However, some problems still remain to be solved. One
of them will be to reduce the radiation loss for a resonant
mode which will be of practical use. A method will be
discussed in a succeeding paper.
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Analysis of Hybrid Field Problems by the
Method of Lines with Nonequidistant
Discretization

HEINRICH DIESTEL AND STEPHAN B. WORM

Abstract —The method of lines, which has been proved to. be very
- efficient for calculating the characteristics of one-dimensional and two-
dimensional planar microwave structures, is extended to nonequidistant
discretization. By means of an intermediate transformation it is possible to
maintain all essential transformation properties that are given in the case of
equidistant discretization. The flexibility of the method of lines is increased
substantially. As a consequence, the accuracy is improved with reduced
computational effort.

I. INTRODUCTION

SUCCESSFUL DESIGN of planar microwave cir-
cuits presupposes accurate knowledge of the char-
acteristics of the elementary components.

In principle, an exact determination of the characterls-
tics of passive components like transmission lines, resona-
tors, and filters is possible by means of complete Fourier
series expansions. For numerical evaluation, only a finite
number of terms can be taken into account. Hence, this
method is characterized by the fact that the exactly for-
mulated problem is solved apprommately

Manuscrlpt received November 3, 1983; revised February 6, 1984. This
work was supported by Deutsche Forschungsgememschaft )

The authors are with the Department of Electrical Engmeenng,
Fernuniversitact, Hagen, Federal Republic of Germany.

A completely different way is taken by the grid-point
method and the method of lines [1], where the approxi-
mately formulated problem is solved exactly.

The semi-analytical method of lines has been applied to
various problems of physics [2]. An essential extension of
this method is given in {3] for the one-dimensional and in
[4] for the two-dimensional hybrid problem of planar
waveguides. It has been shown that this class of waveguides
can be solved accurately and in a simple manner. -

In the limiting case of an infinite number of lines,
exactly the same solution'is obtained as in the limiting case
of an infinite number of terms in the Fourier series expan-
sions.

The relative convergence phenomenon which is a conse-
quence of the Fourier series truncations, does not occur
with the method of lines. Optimum convergence is always
assured, if the simple condition is satisfied that the strip-
edges are located at definite positions with respect to the
adjacent ¢*- and Y lines [5]. Tt should be noted, however,
that the convergence of the propaga‘uon constant, the
characteristic impedance’ or the resonant frequency does
not critically depend on the edge parameters, so that the
problem of conveérgence on the whole is not critical.
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